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Abstract

A generic data-driven approach is presented that employs machine learning to predict the future reliability of components in utility
networks. The proposed approach enables utilities to implement a predictive maintenance strategy that optimizes life-cycle cost
without compromising safety or creating environmental issues. Any machine learning technique that qualifies as a probabilistic
classifier can be employed within the proposed approach. To identify the data-driven model that performs best, a practical metric
to assess the performance of the competing models is proposed. This metric is specifically designed to quantify the forecasting
performance with respect to maintenance planning. Additionally, a data-driven sensitivity analysis approach is discussed that allows
assessing the influence of the different features on the model prediction. Through an application example, it is demonstrated how the
proposed approach can be applied to predict future defect rates of pipe sections for maintenance planning in a large gas distribution

network.

1. Introduction

A gas distribution network distributes the natural gas deliv-
ered over long distances by trunk gas pipelines to consumers.
Gas distribution networks are operated by natural gas utilities.
A key responsibility of natural gas utilities is to maintain the gas
distribution network that they operate.

Unless regulated by national standards, a gas utility can pursue
different maintenance policies [33, 11]: In a reactive/corrective
maintenance policy, components are repaired or replaced once
they fail. Contrary to that, a proactive maintenance policy aims
atreducing the occurrences of unplanned defects [58]. Proactive
maintenance policies include preventive and predictive policies.
In a preventive maintenance policy, maintenance or inspection
actions are performed at regular intervals. In a predictive main-
tenance policy, maintenance is performed based on the estimated
state of the components [25, 26].

A problem of a reactive/corrective maintenance policy is that
maintenance actions cannot be scheduled to balance the work-
load. Instead, the incurring workload is often unbalanced, which
makes resource planning difficult. As a consequence, a reactive
maintenance action is usually more expensive than a comparable
scheduled maintenance action. Moreover, a comparatively high
rate of observed component defects could potentially bring the
operating utility company into disrepute and hinder the company
from acquiring or renewing network licenses in the future.

For a proactive maintenance policy, resource planning can
be done efficiently, but unplanned component defects can only
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be reduced and not totally prevented. With a proactive policy,
more maintenance actions need to be performed on average than
for a corrective policy, often resulting in higher network relia-
bility. Indeed, preventive maintenance is a common strategy for
gas networks [33, 52], whereby the individual components are
inspected/maintained periodically.

A central objective of maintenance planning is to optimize the
life-cycle cost without compromising safety or creating environ-
mental issues [25, 30]. In this regard, predictive maintenance
[51] has a larger potential compared to a periodically performed
preventive maintenance [1]. For a predictive maintenance, the
most critical components to maintain preferentially are identi-
fied based on a prediction of the future trend in the development
of the conditions of network components [33]. The criticality
can be expressed in terms of the expected current or future reli-
ability (reliability-based maintenance) or risk (7isk-based main-
tenance). Especially risk-based procedures are highly suitable
to minimize life-cycle cost [1]. If the maintenance is performed
reliability- or risk-based, the rate of observed defects tends to
gradually decline compared to most other maintenance strate-
gies [33, 30].

However, assessing the reliability and the associated risk of
components in natural gas distribution networks is challenging
due to incomplete knowledge about the state of the component
(partly due to a lack of suitable deterioration models) and the un-
known state of the surrounding environment [33, 64, 48, 21, 62].
For example, most pipes in gas distribution networks are buried
underground and the present state of the pipe as well as the
properties of the surrounding soil are uncertain. Therefore, a
stochastic model is required to quantify the involved uncertain-
ties and to derive the expected reliability and/or risk associated
with the component.

In order to reduce the uncertainty in such a stochastic model,
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historical data on the gas distribution network and on external
factors that influence the state of the network components is es-
sential. For example, collected historical data can help to iden-
tify the main causes of unexpected breakdowns [33, 58, 38, 44].
This requires a utility to invest in collecting relevant data that
can help to reduce modeling uncertainties. Such data is already
collected by many utilities [41]. Additionally, geospatial data
on soil types, location-specific data on weather/climate condi-
tions and data on traffic intensity can be readily acquired from
geographic information systems for the coordinates of interest
[16, 28].

So far, data-driven predictive maintenance of pipes in gas
distribution networks has not received much attention in the
literature. Contributions that discuss predictive maintenance for
other utility networks include [32, 4, 17, 20, 2, 10]. Other work
on data-driven predictive maintenance includes [52, 32, 36, 5,
14, 31, 13, 15, 59]. Contributions on artificial intelligence in
the context of gas distribution networks include [65, 56, 63].

This contribution presents a novel data-driven approach that
employs machine learning to predict the future reliability of
pipes in gas distribution networks. In principle, any machine
learning technique that qualifies as a probabilistic classifier can
be employed within the proposed approach. We propose a prac-
tical metric to identify the data-driven model that performs best,
in case different competing modeling approaches are investi-
gated. Moreover, we introduce a data-driven global sensitivity
analysis approach that allows assessing the influence of the dif-
ferent features on the model prediction. With some modifica-
tions the proposed approach is applicable to other component
types or other types of utility networks.

2. Problem Statement

2.1. The feature vector and recorded past defects

To each pipe section S in the network, one can attribute a
feature vector x. The feature vector x is a collection of properties
or characteristics associated with the particular pipe section S
[8]. Characteristics of S can for example include its length,
age, diameter, material type, defects that occurred in the past,
location or associated district of the network. Features can also
be based on geospatial data. This can include data on soil types,
weather/climate conditions, vegetation in the pipe’s vicinity or
traffic intensity.

Note that the feature vector x does not only depend on S, but
also on a point in time. In the following, we treat x as a function
of S and y (i.e., X(S,y)), where y denotes a specific calendar
year. This implies that in order to predict the performance of S
in year y + 1, one can embed information available up to (and
including) year y in the feature vector x.

Additional to the feature vector X, it is essential that a (com-
prehensive) record of defects that occurred in the past on the
network’s pipe sections is available for the analysis. At least
for a certain observation period or network section, this record
must be complete; i.e., it must contain all (detected) defects.

2.2. The quantity to predict

The employed data-driven machine learning approach pre-
dicts for a specific pipe section S and calendar year y with
feature vector x(S,y) the probability Pr[Dg y+1/x(S,y)] that
defects will occur within calendar year y + 1.

We distinguish three outcome classes Ds , € {0,1,2} for
defects occurring within calendar year y on pipe section S:

Dg , =0: No defects occur.
Dg y = 1: Exactly one defect occurs.
Dg y = 2: More than one defects occur.

The outcome classes Dg y = 1 and Dg , = 2 should be com-
bined into a single class if the recorded data contain almost
no occurrences of multiple defects per pipe section and per
year: In such case, a good prediction performance for D, =2
should not be expected and differentiating between Dg ), = 1
and Dg , = 2 could actually lead to a decrease in model perfor-
mance. The occurrence of defects at any two pipe sections S
and Sj, is modeled as conditionally independent given x(S,, y)
and x(Sp, y).

The associated risk [47] can be derived by multiplying
Pr[Dg y.1|x(S, y)] with the consequences and costs associated
with Dg_y41 as a function of x(S, y) and by evaluating the ex-
pectation over all states of D y.1.

2.3. How the analysis can support predictive maintenance

The derived predictive quantity (either probability or risk) is
a useful input for maintenance planning. In short-term mainte-
nance planning, the predictive quantity can be used for execu-
tion planning to decide which pipe sections to maintain/replace
next in order to make optimal use of the available budget
[43, 29, 34, 37], e.g., by ranking the network sections with
respect to their predicted defect rates. In medium-term main-
tenance planning, the predictive quantity can be used to decide
how much budget should be allocated to the individual sectors
of the network for future maintenance actions [23], e.g., by as-
sessing how many pipe sections need to be replaced in order
to achieve a specific target rate of pipe defects. The predictive
quantity could also be used for inspection planning, e.g., by us-
ing a risk-based approach to decide which pipe sections should
be inspected next.

2.4. Restrictions and challenges of the modeling approach

The approach proposed in this work is illustrated by consider-
ing pipe sections as the network components of interest for the
predictive modeling; other component types of the gas distribu-
tion network (e.g., valves and fittings) are not considered. The
proposed approach could also be applied to predict the perfor-
mance of other types of network components. However, in such
a case, one must reassess which features to consider/include in
the predictive analysis. Moreover, it is essential that a detailed
list of past defects is available for the type of network compo-
nent to be considered. Past defects are the basis upon which
machine learning strategies predict the occurrence of defects in
the future.



Preferably, only similar material types should be considered
jointly within an analysis (e.g, different types of polyethylene
(PE) pipes). If, for two material types, degradation depends
on entirely different effects or processes (e.g., for steel and PE
pipes), it is often better to assess their performance in two sep-
arate analyses (i.e., with two separate data-driven models).

In principle, the presented approach can also be applied to
other types of utility networks. However, one needs to take into
account that the term “failure” can have a different interpretation
and different consequences in different utility networks. For
natural gas distribution networks, the network typically remains
operational even if a failure occurs at a pipe section. This
may also hold for water distribution networks, but usually not
for electricity networks. For gas distribution networks and for
electricity networks, it is often clearly defined what a failure
event is, whereas for water distribution networks a failure can
be either a leak or a burst; e.g., [25].

3. Predictive modeling of pipe defects

3.1. Separation of data into a training and a test data set

The data-driven prediction model will forecast the probabil-
ity Pr[Dg y,+1/X(S, ya)] of defects in calendar year yq + 1 on a
specific pipe segment S with feature vector x(S, yq), where yq
is the calendar year up to which recorded data (i.e., past obser-
vations) is available. We remark that the initial calendar year
differs for each pipe section. Note that it is straightforward to
modify the model so that it predicts defects in calendar year
va+n, with n € {1,2,...}. For the final model that is used to
generate the predictions, all data available up to year yq will be
used to train the model. However, for model development, in
order to perform feature engineering, to identify the most suit-
able machine learning technique and to adjust the parameters of
the data-driven model, the available data is split into a training
and a fest data set. During model development, the data-driven
models are learned based on the training data set and the fi-
nal model performance of the different modeling approaches is
assessed and compared using the test data set [39, 8].

The splitting of the training and the fest data set should be
performed such that it corresponds well with the actual forecast-
ing problem to solve. In the forecasting problem at hand, we
use all available information up to a calendar year yq4 to predict
the probability of defects in the following calendar year yq + 1.
Thus, the splitting of the training and the test data set should
be done with respect to calendar years; i.e., all data up to and
including calendar year y; are assigned to the fraining data set
and all data starting from year y, + 1 are assigned to the fest data
seft, where y; + 1 < yq must be maintained. The calendar year
v, for the split should be selected such that most data is assigned
to the training data set. However, the data assigned to the test
data set should still give a good representation of the expected
average defect rates of the individual pipe sections. The statisti-
cal uncertainty in the defects observed in just a single year (i.e.,
for ys = yq — 1) is often relatively high.

Note: The splitting of the training and the test data set should
not be done with respect to the pipe sections, e.g., through

assigning 80% of the sections to the fraining data set and the
remaining 20% to the test data set. For such a splitting approach,
the focus of the test data set is on predicting the probability of
the pipe section being defective over the entire recorded service
life (whereas in practice we are only interested in the future
defect rate of the pipe section), where (future) information on
the performance of similar pipes is already available (which is
generally not the case in practice).

3.2. Learning of data-driven models

After having separated the data into a training and a fest data
set, data-driven models can be developed. To train a model,
all recorded data up to year y, are used. The target variable is
arranged as follows: For each operation year y < y, of pipe seg-
ment S, the model predicts the probability Pr[Dg y41]x(S, y)]
of no defects (Ds y41 = 0), one defect (Ds, y41 = 1), or more
than one defects (Ds,y+1 = 2) on pipe section S within year
y + 1; where the cases Dg y41 = 1 and Dg 1 = 2 can be
combined if almost no observations of Dg y41 = 2 are avail-
able. The feature vector x(S,y) is the model input and the
observed defects D y41 of the corresponding pipe section S in
year y + 1 are treated as model output. The parameters of the
data-driven model are inferred such that the evaluated proba-
bility Pr[Dg, y+1/x(S, y)] explains best the model output Dg y4+1
as a function of the model input x(S,y) for all y < y, and
all sections S. The precise learning approach depends on the
particular machine learning model.

Any probabilistic classification technique that can handle data
as described above can be applied within our proposed approach.
Consequently, within a specific project, a selection of different
machine learning techniques can be employed to produce a va-
riety of competing data-driven models. In the present context,
we recommend gradient boosting machines [18, 12] and random
forest [9] as probabilistic classifiers. However, other probabilis-
tic classifiers like logistic regression or naive Bayes can also
be investigated within a comparative performance assessment.
Some probabilistic classifiers are known to distort the predicted
probabilities, which can be calibrated in a post-processing step
[42].

Additionally, instead of the standard probabilistic classifiers,
a Bayesian model can be developed to probabilistically describe
the occurrence of defects. Such a model is tailored to a specific
project and the data observed in that project. Furthermore, it is
based on engineering considerations of the processes that po-
tentially cause defects. However, from a computational point of
view, Bayesian models are typically significantly more expen-
sive to learn than standard probabilistic classifiers.

3.3. Assessment of the prediction capabilities through predic-
tion curves

Once different data-driven models are set up and the corre-
sponding model parameters are learned using the training data
set, the prediction capabilities of the models should be assessed
and compared based on the model performance on the fest data
set. Instead of using standard machine learning measures to
quantify the model performance, we propose a case-specific
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Fig. 1. The prediction curve of the gradient boosting model investigated in the
presented application example.

measure. For a predictive model supporting maintenance plan-
ning, in the ideal case, the model would be able to correctly
identify all pipe segments that will be defective in a certain fu-
ture operation year. Thus, a model should be rated higher if it
is able to identify a larger number of defective pipe segments .

For each pipe section § that is still operational in year y, + 1
(i.e., each pipe section that appears at least once in the fest data
set), we evaluate the probability pg s y +1:

Pa.s.ye+1 =Pr[Ds.y 1 = dIX(S,y5)] . (D)

for d = 1 and d = 2. The defect rate Ag , 4+ of pipe section § in
year ys + 1 can then be approximated as:

Pd=1,8,ys+1 T Pd=2,S,ys+1 * D=2
1(S) '

@
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where [(S) is the length of pipe section S. np=; is the average
number of observed defects on a section in a year, conditional on
at least two defects occurring within that year, evaluated based
on the training data set.

As a tailored measure for model performance, we introduce a
so-called prediction curve. For a prediction curve, the horizontal
and vertical axes of the plot range between [0, 1]. Points on the
prediction curve are obtained as follows:

1. First, all ne pipe sections S(k), k € {1,..., R},
appearing in the test data set have to be sorted in de-
scending order according to their future predicted defect
rate Ag(k),y,+15 i.€., the pipe section S(1) with the largest
As(1),y,+1 18 at the top of the list and the pipe section
S(nora1) with the lowest rate Ag(n,,.),y,+1 i at the end of
the list. Instead of using the predicted defect rate Agx),y,+1

for calendar year y; + 1, in principle, also the predicted av-
erage defect rate within the pipe’s years of operation in the
test data set could be used.

2. Next, for each pipe section S(k), the total number ngx) of
defects recorded in the fest data set is evaluated.

3. For the k pipe segments that have the highest predicted de-
fect rate, the joint length of the pipe segments is evaluated,
relative to the total length of all investigated pipe segments:

_ T (S
S 1(S(3)

where /(S (7)) is the length of the pipe section with the ith
largest predicted defect length. This fraction xi gives the
value of the point on the horizontal axis that is associated
with k selected samples.

4. To get the value z; of the point on the vertical axis that is
associated with k selected samples, the number of defects
recorded for the selected pipes in the test data set is counted
relative to the total number of defects recorded in the fest
data set:

3
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An exemplary prediction curve is shown in Fig. 1.

The prediction curve allows to visually assess and compare
the performance of a data-driven model. To quantitatively com-
pare different models, the point on the curve that is most rel-
evant for the predictive maintenance problem at hand is se-
lected. For example, if approximately 1% of all pipes are main-
tained/replaced each calendar year, then the vertical value of the
curve V(1%) that belongs to the 1% value on the horizontal
curve is used. The V (1%) states what fraction of defects could
potentially be avoided if 1% of the identified most critical pipes
are replaced. For example, with the predictive model considered
in Fig. 1, replacing the 1% most critical pipe sections leads to
a reduction of 25% of pipe failures. Besides the V (1%) value,
any other fraction can be used; e.g., V (10%).

Alternatively, the area ‘A under the prediction curve can be
used to quantify the overall predictive capability of a given
model, similar to the AUC of an ROC curve [40]. The value
of A should be within [0.5,1). A value of 0.5 signifies that
the model is not better than chance. The larger the value of
A, the better the overall predictive performance of the model.
However, even the ideal model cannot achieve a value of 1 in
practice, since defects are not concentrated on a single pipe
section.

The log-likelihood In( L) of the prediction on the fest data set
can also be used to assess model performance:

“

Ik =

Niotal

In(£) =)

i=1 VyeY(S(i))

In (Pr [Ds(i)’y|x(S,y - 1)]) , (5

where Y(S(i)) is the set operation years contained in the fest
data set for pipe section S(i). The larger In(L), the better the
model predicted the actual observations D ;),y.

For some machine learning techniques, a probability of zero
could be associated with a certain outcome class Dg; . If



a different outcome class is observed, a value of —co will be
associated with In(£). In such cases the probability calibra-
tion strategies mentioned in [42] can help to obtain meaningful
values for In(L).

The log-likelihood can also be evaluated with respect to the
training data set, which we will in the following refer to as
data-fit.

3.4. Sensitivity analysis

Conducting a sensitivity analysis helps us to understand
(i) which features have the largest influence on the predicted
damage rate or (ii) which features could potentially be omit-
ted as their impact on the damage rate is small [50]. For the
proposed data-driven approach, we suggest to use a global sen-
sitivity analysis method that allows to treat the model as a black-
box; i.e., a sensitivity method that is not specific to the used
machine learning model. Such a generally applicable approach
allows us to easily compare and assess the behavior of a set of
(fundamentally) different predictive classifiers within acommon
framework.

We suggest to employ a variance-based global sensitivity
analysis [49, 54] that estimates the first-order Sobol’ indices
[53]. The first-order sensitivity index S; measures the contri-
bution of feature X; on the variance of the output, where the
impact of interactions between X; and other input features is not
considered. The index S; for input feature X; is defined as:

. Vary, [Ex_; [As,y+1(x)|X;]]

i = , 6
Var [/lS,y+l(X)] ©

where Ey | [/lS,y+1 (x)\Xi] is the expected defect rate with re-
spect to all input features except X;, which is fixed. The indices
can be used for factor prioritization; i.e., to identify which fac-
tors have the largest influence on damage rate predicted by the
model (see point (i) above). The suggested procedure to conduct
the sensitivity analysis is:

1. All feature vectors of the training data set are treated as

input samples to the sensitivity analysis.
Alternatively, the combined set of feature vectors of both
the training and the fest data set could be used as input to
reduce the statistical uncertainty in the estimated sensitiv-
ities.

2. For each feature vector x of pipe section § in year y, the

defect rate Ag .1 is evaluated with the data-driven model
of interest.
Alternatively, for initial feature selection and extraction,
the recorded defects can be used instead of the defect rates.
This allows to assess the sensitivities of the recorded defects
without an underlying model.

3. Using the matrix of collocated feature vectors as input, and
the vector of associated defect rates as output, the first order
Sobol’ indices can be directly estimated with the algorithm
explained in [35], without further model evaluations.

4. The relative importance of each feature is obtained by nor-
malizing the vector of first order Sobol’ indices.

3.5. Forecasting of future defect rates

For forecasting the future defect rates Ag y,+1, the se-
lected probabilistic classifier is trained on the full data
set. Using the resulting data-driven model, the probabilities
Pr[Dg y,+1x(S, yq)] of defects in calendar year yq + 1 are eval-
uated for all active pipe sections of the network. In a post-
processing step, the defect rates As_y,4+1 are obtained according
to Eq. (2).

Both Pr[Dg y,+1|x(S, y4)] and As y,+1 can then be used as
input for maintenance planning. Alternatively, the risk asso-
ciated with each pipe section S can be calculated as basis for
maintenance planning.

4. Case study network

As application example for the practical demonstration of
the proposed approach, we use a large gas distribution network
located in southwest Germany. The available data set includes
all relevant information starting from 1910 up to the end of
2019. Only steel pipes are considered here; pipes made out of
PE or gray cast iron are not included. The total length of steel
pipes in the database is 2.7 x 10® km. The total observed joint
operation time of all pipe segments is 1.7 x 10° years. Further
properties of the data set are summarized in Table 1.

For each pipe section, we take into account the past history,
as well as the pipe’s characteristics and the available geospatial
data at the pipe’s location. This includes: number of defects
observed in each year of operation, length of the section, year
of construction, material group (this also includes the pipe’s
coating), years of operation, diameter, associated district of
the network, corrosion prevention measures, type of soil in the
pipe’s vicinity, type of land use in the pipe’s vicinity (urban,
rural, industrial), traffic volume on ground surface, vegetation in
the pipe’s proximity, third-party influences and years of critical
findings during inspections. A critical finding is recorded if
there is (due to construction work in the vicinity) an opportunity
for a visual inspection of a pipe section and if the conducted
visual inspection shows that the pipe is in an unfavorable state.
For the type of soil in the pipe’s vicinity, we only take the
predominant soil type into account if the pipe traverses different
soil layers. A third-party influence is logged if in the associated
district of the network a pipe is damaged in an external event
(e.g., due to an excavation). Thus, third-party influences are
not directly associated with a specific pipe section, but with an
entire district of the network. It could be used as an indicator for
the intensity of construction activity in the pipe’s vicinity. Data
on the vegetation in the pipe’s proximity was only available for
roughly a third of the entire pipe sections.

4.1. Separation of data into a training and a test data set

We assign the last five years of recorded data to the zest data
set; i.e., ys = 2014. A comparison between the full data set,
the training data set and the fest data set is given in Table 1.
For the application example at hand, we can use roughly 103
recorded defects (around 8% of all recorded defects) to assess
the forecasting performance of the developed data-driven model.



Table 1. Key data of the pipe network investigated in the application example.

full data set training data set test data set
number of pipe segments 4.4 x10* 4.3 % 10* 3.0 x 10*
total pipe length [km] 2.7%x103 2.7%103 22x103
joint operation time [years] 1.7 x 10° 1.5%x 106 0.2 x 10°
total observed “‘size” [km years] 1.1x10° 1.0x 10° 0.1x10°
total recorded defects 1.2 x 10* 1.1x 10* 0.1 x 10*

If the size of a data set is quantified as the sum over the product
of length and operation years of the pipe segments, about 9%
of the data is assigned to the test data set.

Note that in Table 1, for the quantities “number of pipe seg-
ments” and “total pipe length”, the values given for the training
and fest data set do not add up to the values given for the full
data set. This is due to splitting up the data with respect to the
year y; = 2014. Consequently, a pipe can be both in the training
data set (for the operation time up to 2014) and in the fest data
set (for the operation time since 2015).

4.2. Learning of data-driven models

As predictive classifiers, we investigate gradient boosting,
random forest and naive Bayes. Additionally, we set up a pre-
dictive Bayesian model tailored to the problem at hand. A short
summary of implementation specific details of each data-driven
model is given in the following:

gradient boosting: The gradient boosting classifier [22, 18,
19] from the Python library scikit-learn (version 0.23.2) is
employed [45]. We use 500 for the number of weak learners
and a learning rate of 0.1. The early stopping criterion is
activated when the validation score does not improve for 5
subsequent iterations with a validation fraction of 0.1.

random forest: The random forest classifier [9] from the
Python library scikit-learn (version 0.23.2) is employed
[45]. We use a total of 100 trees. All features are consid-
ered when looking for the best split, where the quality of a
split is measured in terms of the entropy.

naive Bayes: We use our own Python implementation of naive
Bayes. In the final model, only the features year of oper-
ation, length of the section, material group and associated
district of the network are considered. The data of the
features year of operation and length of the section were
both discretized into 7 categories. The data of the material
group and the associated district of the network is already
discrete.

Bayesian modeling approach: An expert-based parametric
model that employs Gaussian process regression is used.
The uncertain model parameters are inferred with a
Bayesian approach. An overview of the Bayesian model is
presented in Appendix I.

4.3. Assessment of the prediction capabilities through predic-
tion curves

Fig. 1 presents the prediction curve of the investigated gra-
dient boosting model. Characteristic values that quantify the
model performance are listed in Table 2 for all investigated mod-
els. In terms of V (10%), the gradient boosting model exhibits
the best performance. With respect to V(1%), both gradi-
ent boosting and the full Bayesian model perform equally well.
With respect to (A, gradient boosting, naive Bayes and the full
Bayesian model perform equally well. For the log-likelihood
on the fest data set and the data-fit on the training data set, the
full Bayesian model performs best. The naive Bayes model per-
forms surprisingly well with respect to V(1%), V(10%) and
A. However, unlike gradient Boosting and the full Bayesian
model, we observed that in general the model performance of
naive Bayes is relatively volatile for alternative separations of
the data set.

For the example at hand, gradient boosting appears to be
the most suitable machine learning algorithm. Even though
the Bayesian model exhibits a similar performance as gradient
boosting, the former model is more involved to set up and more
computationally expensive to learn.

4.4. Sensitivity analysis

We apply the approach outlined in Section “Sensitivity Anal-
ysis” to estimate the first-order Sobol’ indices for the gradient
boosting model. The resulting sensitivities are illustrated in
Fig. 2.

Four of the five features with the largest impact on the pre-
dicted defect rate in the gradient boosting model can be linked
to the history of damages of the pipe section: the length of the
pipe section, the past defects, critical findings and third-party
influences. The length is the feature with the largest sensitivity.
This effect is artificially induced by the management of the his-
tory of the pipes in the database: If part of the pipe section on
which a defect occurred needs to be replaced with a new pipe,
each obtained sub-section of the original pipe is assigned a new
ID number. Thus, even the part of the pipe that is not replaced
is assigned a new ID number in this process. Consequently, the
shorter the pipe, the more likely it is that it was split-up before,
which in turn means that shorter pipes are likely problematic
pipe sections. Besides the features that can be linked to the
damage history, the years of operation is the feature with the
third-largest sensitivity. All other features not mentioned here
have a relatively small sensitivity index.



Table 2. Characteristic values that quantify the performance of the models investigated in the presented application example.

test data set

training data set

In(£) V(1%) V(10%) A data-fit
gradient boosting -48x10° 25% 60% 0.87 -4.9x 10*
random forest - 16% 49% 0.77 -

naive Bayes -6.3x 103 23% 57% 0.87 -4.6x10*

Bayesian model 4.7 % 103 25% 59% 0.87 -3.2x 10*
length of pipe section
past defects on pipe
years of operation
critical findings during inspections
third-party influences
year of construction
material group
traffic volume on ground surface
network district
predominant soil type
type of land use in vicinity
corrosion prevention measures
vegetation in proximity
diameter

0.2)0 0.62 0.64 0.66 0.68 0.'10 0.'12
sensitivity

Fig. 2. Sensitivities obtained with the first-order Sobol’ analysis conducted on the gradient boosting model for the presented application example.

4.5. Forecasting of future defect rates

The forecasted defect rates Ag y,.1, obtained with gradient
boosting trained on the full data set, are used to rank all active
pipe sections of the network. Such a ranking of the pipe sections
in the network is crucial for implementing an efficient mainte-
nance plan [33]. Based on this ranking, the most critical pipes
in the network can be identified and prioritized for upcoming
maintenance and repair actions.

Up to now, the maintenance in the investigated gas distribu-
tion network is based on the ranking obtained from a heuristic
measure. This heuristic ranking is calculated based on a formula
that blends practical experience with available damage data. In
particular, the state of a pipe section is estimated based on (i) pa-
rameters from Weibull statistics and (ii) hazard components like
traffic or vegetation in proximity to the grid. The heuristic rank-
ing is obtained as the product of these two influence groups,
where each influence group is computed using a weighted sum-
mation. The goal is to replace the employed heuristic rating
of pipes with the forecasted future defect rates. In order to
visually compare the performance of the proposed data-driven
model, with the one of the current heuristic approach, we plot
in Fig. 3 the forecasted defect rates over the heuristic rating for
all pipe sections in the fest data set, with orange points indi-
cating defective pipe sections. The plot shows that a criticality
ranking based on the forecasted defect rates will differ consid-
erably from a criticality ranking based on the heuristic rating.
Considerably more defective pipe sections are amongst the most
critical pipes identified based on the defect rate predicted with

machine learning (25% of all defective pipes), compared to the
critical pipe sections identified based on the heuristic rating (2%
of all defective pipes).

5. Concluding remarks

The proposed data-driven approach is applicable to assess
the condition of components in utility networks. It is not linked
to a particular machine learning algorithm, but works with any
probabilistic classifier. The proposed approach allows to assess
and compare the performance of different probabilistic classi-
fiers based on a practical metric, which can be summarized in
prediction curves. This metric is specifically designed to quan-
tify the forecasting performance with respect to maintenance
planning.

We demonstrate the applicability of the proposed approach by
assessing the defect probability and rate of steel pipe sections in
alarge gas distribution network. For the investigated application
example, gradient boosting exhibits the best performance of all
investigated machine learning techniques. The model input fea-
tures with the largest impact are the ones for which a direct link
to the history of damages of the pipe sections can be established.
Geospatial data is found to have a relatively moderate impact on
the forecasted future damage rate.

Data Availability Statement

Some or all data, models, or code generated or used during
the study are proprietary or confidential in nature and may only
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Fig. 3. Comparison of the forecasted defect rate (using the gradient boosting model) with the heuristic ranking for the presented application example. The blue dots
represent pipe sections without defects, the orange dots represent pipe sections on which defects occurred. The pipe sections in the area shaded in green are the most
critical pipe sections according to the forecasted defect rate that cover 1% of the entire network length. The pipe sections in the area shaded in brown are the most
critical pipe sections according to the heuristic ranking used up to now that cover 1% of the entire network length.

be provided with restrictions.

All data used in the application example are proprietary and
confidential. The data was provided by the utility service
provider 'NetzeBW’ and cannot be shared.

Appendix A. Overview of the Bayesian model used in the
case study

In the case study, a Bayesian modeling approach that em-
ploys Gaussian process regression is used for one of the data-
driven models. The Bayesian approach is employed to infer
the uncertain model parameters of an expert-based parametric
model. The Bayesian inference is performed numerically using
the aBUS [7] approach in a manner similar to [60]. aBUS was
selected as inference method, as its performance does not de-
pend on the number of uncertain model input parameters; i.e.,
aBUS can cope with high dimensional inference problems. In
the BUS (Bayesian Updating with Structural reliability methods)
approach, the space of uncertain model parameters is augmented
by a uniform random variable and the Bayesian inference prob-
lem is interpreted as a structural reliability problem [55]. The a
posteriori samples are obtained as samples conditioned on the
failure domain of the structural reliability problem. To obtain
this failure domain, the likelihood function needs to be scaled by
a constant. In aBUS, the structural reliability problem is solved
with Subset Simulation [3] and the scaling of the likelihood
function [6] is performed adaptively.

The parametric model is gradually improved by sequentially
adding features to the model. Initially, for each material group,

four one-dimensional Gaussian processes [61] are introduced.
Conditional on the respective material group, the corresponding
four Gaussian processes are superposed to predict the proba-
bility of Dg .1 as a function of the year of operation. Two
Gaussian processes are superposed to model the probability of
one defect in a year (Dg y+1 = 1) and the other two are super-
posed to model the probability of more than one defect in a
year (Dg y+1 = 2). In each superposition, the outcome of one
of the two Gaussian processes is multiplied with the length of
the pipe section. The separation into two Gaussian processes
allows to account (i) for effects for which the length is directly
proportional to the occurrence rate of defects and (ii) for effects
for which the occurrence rate of defects does not depend on the
length of a pipe section. Higher order influences of the length
of pipe sections were not considered. The Gaussian processes
need to be discretized, which significantly increases the number
of uncertain parameters that have to be inferred. This is not
a problem for aBUS, as the performance of the method is not
influenced by the total number of uncertain model parameters.

All other features were thereafter added sequentially to the
above described stochastic model. For each added feature, a suit-
able adaptive parametric model was identified that also captures
potential dependencies with other features already accounted
for in the stochastic model.
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